FCHPT
   
 
 
  25.06.2016 05:28:33
Information for: applicants students staff graduates visitors

Information about: institute department of information engineering and process control department of mathematics research projects publications cooperation

Links: AIS Black box Faculty home page University home page IFAC SSKI control.IEEE.cz

doc. RNDr. Milan Jasem, CSc.

Position: Lecturer
Department: Department of Mathematics (OM)
Room: NB 630
E-mail:
Phone: +421 259 325 332
Fax: +421 252 495 177
Research activities: Ordered algebraic systems
Availability: Availability Weekend

Publications

Book

  1. Jasem, M. – Kolesárová, A.: Mathematics II, A Collection of Problems (in Slovak), Nakladateľstvo STU, Radlinského 9, 812 37 Bratislava, 2012.
  2. Jasem, M. – Horanská, Ľ.: Mathematics I, A Collection of Problems (in Slovak), STU v Bratislave, Radlinského 9, 812 37 Bratislava., 2009.

Chapter or pages in book

  1. Jasem, M.: On extension of congruences to isometries in partially ordered groups, In ZAMAT 2014, Proceedings of Applied Mathematics and Informatics, Editor(s): A. Kolesárová, M. Nehéz, pp. 65–70, 2014.

Article in journal

  1. Jasem, M.: A Cauchy completion of dually residuated lattice ordered semigroups. Journal of Applied Mathematics, no. 3, vol. 5, pp. 15–23, 2012.
  2. Jasem, M.: On Isometries in GMV-Algebras. Mathematica Slovaca, no. 5, vol. 61, pp. 827–833, 2011.
  3. Jasem, M.: Relatively uniform convergence in dually residuated lattice ordered semigroups. Journal of Applied Mathematics, no. 2, vol. 4, pp. 77–83, 2011.
  4. Jasem, M.: Isometries and direct decompositions of pseudo MV-algebras. Mathematica Slovaca, vol. 57, pp. 107–118, 2007.
  5. Jasem, M.: On ideals of lattice ordered monoids. Mathematica Bohemica, no. 132, pp. 369–387, 2007.
  6. Jasem, M.: On Intrinsic Quasimetrics Preserving Maps on non-abelian Partially Ordered Groups. Mathematica Slovaca, vol. 54, pp. 225–228, 2004.
  7. Jasem, M.: On Lattice-ordered Monoids. Discussiones Mathematicae, General Algebra and Applications, no. 2, vol. 23, pp. 101–114, 2003.
  8. Jasem, M.: Intrinsic metric preserving maps on partially ordered groups. Algebra Universalis, no. 1, vol. 36, pp. 135–140, 1996.
  9. Jasem, M.: Isometries in non-abelian multilattice groups. Mathematica Slovaca, no. 5, vol. 46, pp. 491–496, 1996.
  10. Jasem, M.: Weak isometries and direct decompositions of partially ordered groups. Tatra Mountains Mathematical Publications, vol. 5, pp. 131–142, 1995.
  11. Jasem, M.: Weak isometries in directed groups. Mathematica Slovaca, vol. 44, pp. 39–43, 1994.
  12. Jasem, M.: On isometries in partially ordered groups. Mathematica Slovaca, no. 1, vol. 43, pp. 21–29, 1993.
  13. Jasem, M.: Weak isometries and direct decompositions of dually residuated lattice ordered semigroups. Mathematica Slovaca, no. 2, vol. 43, pp. 119–136, 1993.
  14. Jasem, M.: On weak isometries in multilattice groups. Mathematica Slovaca, no. 4, vol. 40, pp. 337–340, 1990.
  15. Jasem, M.: On dilations and contractions in Riesz groups. Časopis pro pěstování matematiky, no. 2, vol. 115, pp. 134–141, 1990.
  16. Jasem, M.: Pairs of partially ordered groups with the same convex subgroups. Mathematica Slovaca, no. 2, vol. 37, pp. 173–189, 1987.
  17. Jasem, M.: Isometries in Riesz groups. Czechoslovak Mathematical Journal, vol. 36, pp. 35–43, 1986.

Article in conference proceedings

  1. Jasem, M.: On weak isometries in abelian directed groups. Editor(s): O. Šedivý, V. Švecová, D. Vallo, K. Vidermanová, In ACTA MATHEMATICA 17, UKF v Nitre, vol. 17, pp. 63–68, 2014.
  2. Jasem, M.: On weak isometries and congruences in abelian directed groups. In Proceedings of International Conference Presentation of Mathematics'14, Technická univerzita v Liberci, Studentská 2, Liberec, pp. 55–64, 2014.
  3. Jasem, M.: A Cauchy completion of dually residuated lattice ordered semigroups. Editor(s): M. Kováčová, In Aplimat 2012, Faculty of Mechanical Engineering STU, vol. 11, pp. 55–62, 2012.
  4. Jasem, M.: On Convergence with a Fixed Regulator in Riesz Groups. Editor(s): O. Šedivý, D. Vallo, K. Vidermanová, In ACTA MATHEMATICA 14, UKF v NITRE, vol. 14, pp. 95–100, 2011.
  5. Jasem, M.: Relatively Uniform Convergence in Dually Residuated Lattice Ordered Semigroups. Editor(s): M. Kováčová, In Aplimat 2011, Faculty of Mechanical Engineering STU, vol. 10, pp. 129–135, 2011.
  6. Jasem, M.: On convergence with a fixed regulator in dually residuated lattice ordered semigroups. Editor(s): D. Andrejsová, J. Hozman, In Proceedings of International Conference Presentation of Mathematics'11, Technická univerzita v Liberci, pp. 69–77, 2011.
  7. Jasem, M.: Relatively Uniform Convergence in Riesz Groups. Editor(s): M. Kováčová, In Aplimat 2010, STU, vol. 9, pp. 57–61, 2010.
  8. Jasem, M.: A review of non-commutative mv-algebras. Editor(s): Fikar, M., Kolesárová, A., Bakošová, M., In Proceedings IAM 2007 - Workshop on Informatics, Automation and Mathematics, STU Press, pp. 53–57, 2007.

Article in collection

  1. Jasem, M.: Weak relatively uniform convergence in dually residuated lattice ordered semigroups. In Contributions to general algebra, Verlag Johannes Heyn, Klagenfurt, vol. 20, pp. 39–49, 2011.
  2. Jasem, M.: Weak relatively uniform convergence in Riesz groups. In Contributions to General Algebra 19, Verlag Johannes Heyn, Klagenfurt, pp. 127–138, 2010.
  3. Jasem, M.: On Elements of Lattice Ordered Monoids. In Cotributions to General Algebra, Verlag Johannes Heyn, Klagenfurt, vol. 18, pp. 87–95, 2007.
  4. Jasem, M.: On polars and Direct Decompositions of Lattice Ordered Monoids. In Contibutions to General Algebra, Verlag Johannes Heyn, Klagenfurt, vol. 16, pp. 115–132, 2005.

Phd's thesis

  1. Jasem, M.: On mappings preserving intrinsic metrics or quasimetrics in partially ordered algebraic systems. SvF STU v Bratislave, Radlinského 11, 813 68 Bratislava, 2013.