Digital Self-tuning Controllers: Algorithms, Implementation and Applications

May 10, 2005

Springer
Berlin Heidelberg NewYork HongKong London Milan Paris Tokyo
Preface

The field of adaptive control has undergone significant development in recent years. The aim of this approach is to solve the problem of controller design, for instance where the characteristics of the process to be controlled are not sufficiently known or change over time. Several approaches to solving this problem have arisen. One showing great potential and success is the so-called self-tuning controller (STC).

The basic philosophy behind STCs is the recursive identification of the best model for the controlled process and the subsequent synthesis of the controller. A number of academics from universities and other institutes have worked intensively on this approach to adaptive control; K. J. Åström (Department of Automatic Control, Lund Institute of Technology), D. W. Clarke (Department of Engineering Science, University of Oxford), P. A. Wellstead (Institute of Science and Technology, University of Manchester), R. Isermann (Department of Control Engineering, Technical University of Darmstadt), I. D. Landau (Institut National Polytechnique de Grenoble), H. Unbehauen (Control Engineering Laboratory, Ruhr University Bochum) and also V. Peterka (Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague) can be considered as pioneers in this field.

Although during research much effort has been devoted to meeting specific practical requirements it cannot be said that the above approach has been widely applied. On the other hand, many projects have been successfully put into practice. The characteristic common to all these projects was that there was a sufficiently qualified operator available who was both well acquainted with the technology in the field and able to take on board the scientific aspects of the work.

At this current stage of development in adaptive controllers there is a slight growth of interest in both the simpler and more sophisticated types of controller, particularly among universities and companies that deal with control design. It can be seen, however, that the lack of suitable literature in this field imposes a barrier to those who might otherwise be interested. We are referring especially to literature which can be read by the widest possible
audience, where the theoretical aspects of the problem are relegated to the background and the main text is devoted to practical issues and helping to solve real problems. In comparison with the most recent publications on this subject, this book leans towards practical aspects, aiming to exploit the wide and unique experience of the authors. An important part of this publication is the detailed documentary and experimental material used to underline the elements in the design approach using characteristics in the field of time or frequency, dealing with typical problems and principles which guide the introduction of individual methods into practice. We should like to note that all the suggested control algorithms have been tested under laboratory conditions in controlling real processes in real time and some have also been used under semi-industrial conditions.

The book is organized in the following way. Chapter 1 gives a brief view of the historical evolution of adaptive control systems. The reader is introduced to problems of adaptive control and is acquainted with a classification of adaptive control systems in Chapter 2. Modelling and process identification for use in self-tuning controllers is the content of Chapter 3. Chapter 4 discusses self-tuning PID (Proportional-Integral-Derivative) controllers. Algebraic methods used for adaptive controller design are described in Chapter 5. Chapter 6 is dedicated to controller synthesis based on the minimization of the linear quadratic (LQ) criterion. Toolboxes have been created for the MATLAB®/SIMULINK® programming system. They serve to demonstrate designed controller properties and help in applications of controllers in user-specific cases. They are described in Chapter 7. Chapter 8 is devoted to practical and application problems. This chapter is based on the rich practical experience of the authors with implementation of self-tuning controllers in real-time conditions.

Although this book is the product of four workplaces (two universities, academia and industry), the authors have tried to take a unified approach. Of course, this has not always been possible. The original work is followed by a list of literature treating the problem under discussion. We assume the reader knows mathematics to technical university level.

This book was created by a team of authors. Chapter 2 was written by V. Bobál, Chapter 3 by V. Bobál together with J. Böhlm. V. Bobál and J. Fessl created Chapter 4 as follows: Sections 4.1 and 4.2 they wrote together, Sections 4.3, 4.4, and 4.5 are by J. Fessl, and Sections 4.6, 4.7, 4.8, and 4.9 are by V. Bobál. J. Macháček and V. Bobál wrote Chapter 5. Chapter 6 was written by J. Böhlm and Chapter 7 by V. Bobál and J. Böhlm. Finally Chapter 8 is a corporate work by all authors.

This book appears with the support of the Grant Agency of the Czech Republic, which provided the funding for projects numbered 102/99/1292 and 102/02/0204 and by the Ministry of Education of the Czech Republic under grant No. MSM 281100001.

We would like to thank our colleagues and students in the Institute of Process Control and Applied Informatics, Faculty of Technology at the Tomas
Bata University in Zlín for their assistance in the preparation of toolboxes and the camera-ready manuscript, namely Dr Petr Chalupa, Dr František Gazdoš, Dr Marek Kubalčík, Alena Koštálová and Jakub Novák.

We would finally like to thank the Series Editors Professor M. J. Grimble and Professor M. A. Johnson for their support during the publication of this book.

Zlín, Prague, Pardubice
December 2004

Vladimír Bobál, Tomas Bata University in Zlín
Josef Böhm, Academy of Sciences of the Czech Rep.
Jaromír Fessl, Prague
Jiří Macháček, University of Pardubice
Contents

1 **Introduction** .. 1

2 **Adaptive Control Systems** .. 5
 2.1 Formulation of Adaptive Control Problem 5
 2.2 Classification of Adaptive Control Systems 9
 2.2.1 Adaptive Controllers Based on a Heuristic Approach ... 9
 2.2.2 Model Reference Adaptive Systems 11
 2.2.3 Self-tuning Controllers 13
 2.3 Summary of chapter .. 20
 Problems .. 20

3 **Process Modelling and Identification for Use in Self-tuning Controllers** 21
 3.1 Stochastic Process Models 22
 3.2 Process Identification 26
 3.2.1 Typical Identification Problems in Adaptive Control ... 27
 3.2.2 Identification Algorithms 29
 3.2.3 Principle of the Least Squares Method 30
 3.2.4 Recursive Identification Using the Least Squares Method 32
 3.3 Summary of chapter .. 50
 Problems .. 50

4 **Self-tuning PID Controllers** 53
 4.1 PID Type Digital Controllers 54
 4.2 Modifying Digital PID Controllers 61
 4.2.1 Filtering the Derivative Component 62
 4.2.2 Supression of Large Changes in the Controller Output . 63
 4.3 Nonlinear PID Controllers 65
 4.4 Choice of Sampling Period 69
 4.5 PID Controllers for Operational Use 73
 4.5.1 Initial Conditions and Controller Bumpless Connection. 74
4.5.2 Limiting the Integral Term and Wind-up of Controller . 77
4.5.3 Limited Precision in Calculation 87
4.5.4 Filtering the Measured Variables 87
4.5.5 Industrial PID Controllers 89
4.6 Survey of Self-tuning PID Controllers 90
4.7 Selected Algorithms for Self-tuning PID Controllers 93
4.7.1 Dahlin PID Controller 93
4.7.2 Bányász and Keviczky PID Controller 94
4.7.3 Digital PID Controllers Based on the Pole Assignment
 Method ... 96
4.7.4 Digital PID Controllers Based on the Modified
 Ziegler–Nichols Criterion 109
4.8 Simulation Examples in the SIMULINK® Environment 128
4.8.1 Simulation Control of Fourth-order Model 130
4.8.2 Simulation Control of Third-order Nonminimum
 Phase Model ... 132
4.9 Summary of chapter ... 135
Problems .. 136

5 Algebraic Methods for Self-tuning Controller Design 139
5.1 Basic Terms ... 139
5.2 Dead-beat Method .. 143
 5.2.1 Strong Version of the Dead-beat Method 143
 5.2.2 Weak Version of the Dead-beat Method 148
5.3 Pole Assignment Method 149
 5.3.1 Effects of Pole Assignment on the Control Process .. 150
 5.3.2 Algorithm Derivation 152
5.4 Linear Quadratic Control Methods 157
5.5 Simulation Experiments .. 159
 5.5.1 Dead-beat Methods 160
 5.5.2 Pole Assignment Methods 162
 5.5.3 Linear Quadratic Control Methods 163
5.6 Summary of chapter ... 163
Problems .. 164

6 Self-tuning Linear Quadratic Controllers 165
6.1 The Principles of Linear Quadratic Controller Design 166
 6.1.1 The Criterion .. 167
 6.1.2 The Model ... 167
 6.1.3 The Optimization Approach 168
6.2 Using Linear Quadratic Controllers; Examples and Simulation 172
 6.2.1 Stochastic Disturbance Compensation 175
 6.2.2 Set point Control 177
6.3 Adaptive Control ... 180
6.3.1 The Stochastic Approach to Linear Quadratic Controller Design .. 183
6.3.2 The Synthesis of Quadratic Control in Real Time ... 184
6.4 The Properties of a Control Loop Containing a Linear Quadratic Controller 185
6.4.1 Stability .. 186
6.4.2 The Characteristics of Linear Quadratic Control in the Time Domain 190
6.4.3 The Characteristics of Linear Quadratic Control in the Frequency Domain 213
6.5 Tuning an Linear Quadratic Controller .. 226
6.5.1 Tuning a Controller .. 226
6.5.2 Implementing Linear Quadratic Controllers .. 233
6.6 Multivariable Control ... 236
6.7 Minimization of the Quadratic Criterion ... 237
6.7.1 Standard Minimization of the Quadratic Criterion ... 237
6.7.2 Minimization of the Quadratic Criterion in Square Root Form 241
6.7.3 The Minimization Algorithm .. 242
6.8 Summary of chapter .. 243
Problems ... 244

7 Computer-aided Design for Self-tuning Controllers ... 247
7.1 Self-tuning Controllers SIMULINK® Library .. 247
7.1.1 Overview of Library Controllers .. 248
7.1.2 Controller Parameters .. 252
7.1.3 Internal Controller Structure ... 256
7.1.4 Reference Guide and Help .. 258
7.1.5 Creating Applications with Real-Time Workshop ... 258
7.2 Linear-Quadratic Toolbox .. 261
7.2.1 Fixed Linear-Quadratic Controllers ... 261
7.2.2 Adaptive Controllers ... 263
7.3 Summary of chapter .. 265

8 Application of Self-tuning Controllers .. 269
8.1 Decentralized Control Using Self-tuning Controllers ... 269
8.1.1 Supervisory System ... 270
8.1.2 Criteria Used for Ending Adaptation of a Particular Subsystem 271
8.1.3 Logical Supervisor ... 274
8.1.4 Control of Air Heating System Model .. 277
8.1.5 Control of Coupled Motors CE 108 ... 280
8.1.6 Control of Twin Rotor MIMO System – Helicopter .. 282
8.2 Application of the Adaptive Linear Quadratic Controller to a Heat Exchanger Station 285
8.2.1 The Technology .. 285
8.2.2 Linear Quadratic Controller 285
8.2.3 Programming Aspects 286
8.2.4 Experimental Results 288
8.2.5 Conclusions .. 292

8.3 Boiler Control With Multivariable Linear Quadratic Controllers294
 8.3.1 The Technology 294
 8.3.2 Programming Aspects 295
 8.3.3 Connection of the Adaptive Controller into the
 Existing Control Loop 296
 8.3.4 Control Results 296

8.4 Adaptive Linear Quadratic Controller in Cascade Control 300
 8.4.1 The Technology and Controlled Loops 300
 8.4.2 Programming Aspects 302
 8.4.3 Control Results 302

8.5 Steam Pressure Control of Drum Boiler in Power Plant 305
 8.5.1 The Technology and Controlled Loops 306
 8.5.2 Programming Aspects 307
 8.5.3 Control Results 307

References .. 309

Index ... 317